【功能新增】AI:增加 QdrantVectorStore 向量库的接入

This commit is contained in:
YunaiV 2025-03-06 22:22:22 +08:00
parent 6ccd0ca61e
commit 44bcc9476d
9 changed files with 78 additions and 12 deletions

View File

@ -54,7 +54,6 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
private AiKnowledgeService knowledgeService;
@Override
@Transactional(rollbackFor = Exception.class)
public Long createKnowledgeDocument(AiKnowledgeDocumentCreateReqVO createReqVO) {
// 1. 校验参数
knowledgeService.validateKnowledgeExists(createReqVO.getKnowledgeId());
@ -74,7 +73,6 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
}
@Override
@Transactional(rollbackFor = Exception.class)
public List<Long> createKnowledgeDocumentList(AiKnowledgeDocumentCreateListReqVO createListReqVO) {
// 1. 校验参数
knowledgeService.validateKnowledgeExists(createListReqVO.getKnowledgeId());

View File

@ -115,6 +115,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
segmentMapper.updateById(newSegment);
// 3.2 重新向量化必须开启状态
if (CommonStatusEnum.isEnable(oldSegment.getStatus())) {
newSegment.setKnowledgeId(oldSegment.getKnowledgeId()).setDocumentId(oldSegment.getDocumentId());
writeVectorStore(vectorStore, newSegment, new Document(newSegment.getContent()));
}
}
@ -156,9 +157,10 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
private void writeVectorStore(VectorStore vectorStore, AiKnowledgeSegmentDO segmentDO, Document segment) {
// 1. 向量存储
segment.getMetadata().put(VECTOR_STORE_METADATA_KNOWLEDGE_ID, segmentDO.getKnowledgeId());
segment.getMetadata().put(VECTOR_STORE_METADATA_DOCUMENT_ID, segmentDO.getDocumentId());
segment.getMetadata().put(VECTOR_STORE_METADATA_SEGMENT_ID, segmentDO.getId());
// 为什么要 toString 因为部分 VectorStore 实现不支持 Long 类型例如说 QdrantVectorStore
segment.getMetadata().put(VECTOR_STORE_METADATA_KNOWLEDGE_ID, segmentDO.getKnowledgeId().toString());
segment.getMetadata().put(VECTOR_STORE_METADATA_DOCUMENT_ID, segmentDO.getDocumentId().toString());
segment.getMetadata().put(VECTOR_STORE_METADATA_SEGMENT_ID, segmentDO.getId().toString());
vectorStore.add(List.of(segment));
// 2. 更新向量 ID
@ -190,7 +192,8 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
.similarityThreshold(
ObjUtil.defaultIfNull(reqBO.getSimilarityThreshold(), knowledge.getSimilarityThreshold()))
.filterExpression(new FilterExpressionBuilder()
.eq(VECTOR_STORE_METADATA_KNOWLEDGE_ID, reqBO.getKnowledgeId()).build())
.eq(VECTOR_STORE_METADATA_KNOWLEDGE_ID, reqBO.getKnowledgeId().toString())
.build())
.build());
if (CollUtil.isEmpty(documents)) {
return ListUtil.empty();

View File

@ -16,8 +16,8 @@ import jakarta.annotation.Resource;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.vectorstore.SimpleVectorStore;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
import org.springframework.stereotype.Service;
import org.springframework.validation.annotation.Validated;
@ -162,7 +162,8 @@ public class AiModelServiceImpl implements AiModelService {
platform, apiKey.getApiKey(), apiKey.getUrl(), model.getModel());
// 创建或获取 VectorStore 对象
return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel);
// return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel);
return modelFactory.getOrCreateVectorStore(QdrantVectorStore.class, embeddingModel);
}
}

View File

@ -70,6 +70,7 @@
<groupId>${spring-ai.groupId}</groupId>
<artifactId>spring-ai-qdrant-store</artifactId>
<version>${spring-ai.version}</version>
<!-- <optional>true</optional>-->
</dependency>
<dependency>

View File

@ -11,6 +11,7 @@ import cn.iocoder.yudao.framework.ai.core.model.siliconflow.SiliconFlowChatModel
import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
import org.springframework.ai.openai.OpenAiChatModel;
import org.springframework.ai.openai.OpenAiChatOptions;
import org.springframework.ai.openai.api.OpenAiApi;
@ -29,7 +30,9 @@ import org.springframework.context.annotation.Lazy;
* @author fansili
*/
@AutoConfiguration
@EnableConfigurationProperties(YudaoAiProperties.class)
@EnableConfigurationProperties({YudaoAiProperties.class,
QdrantVectorStoreProperties.class // 解析 Qdrant 配置
})
@Slf4j
public class YudaoAiAutoConfiguration {

View File

@ -5,6 +5,7 @@ import cn.hutool.core.lang.Assert;
import cn.hutool.core.lang.Singleton;
import cn.hutool.core.lang.func.Func0;
import cn.hutool.core.util.ArrayUtil;
import cn.hutool.core.util.ReflectUtil;
import cn.hutool.core.util.RuntimeUtil;
import cn.hutool.core.util.StrUtil;
import cn.hutool.extra.spring.SpringUtil;
@ -26,6 +27,9 @@ import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingModel;
import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingOptions;
import com.alibaba.cloud.ai.dashscope.image.DashScopeImageModel;
import com.azure.ai.openai.OpenAIClientBuilder;
import io.micrometer.observation.ObservationRegistry;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import lombok.SneakyThrows;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties;
@ -33,11 +37,14 @@ import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiConnectionPr
import org.springframework.ai.autoconfigure.ollama.OllamaAutoConfiguration;
import org.springframework.ai.autoconfigure.openai.OpenAiAutoConfiguration;
import org.springframework.ai.autoconfigure.qianfan.QianFanAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration;
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiAutoConfiguration;
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiConnectionProperties;
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
import org.springframework.ai.chat.model.ChatModel;
import org.springframework.ai.document.MetadataMode;
import org.springframework.ai.embedding.BatchingStrategy;
import org.springframework.ai.embedding.EmbeddingModel;
import org.springframework.ai.image.ImageModel;
import org.springframework.ai.ollama.OllamaChatModel;
@ -57,10 +64,15 @@ import org.springframework.ai.stabilityai.StabilityAiImageModel;
import org.springframework.ai.stabilityai.api.StabilityAiApi;
import org.springframework.ai.vectorstore.SimpleVectorStore;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.ai.vectorstore.observation.DefaultVectorStoreObservationConvention;
import org.springframework.ai.vectorstore.observation.VectorStoreObservationConvention;
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
import org.springframework.ai.zhipuai.ZhiPuAiChatModel;
import org.springframework.ai.zhipuai.ZhiPuAiImageModel;
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
import org.springframework.ai.zhipuai.api.ZhiPuAiImageApi;
import org.springframework.beans.BeansException;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.web.client.RestClient;
import java.io.File;
@ -214,13 +226,14 @@ public class AiModelFactoryImpl implements AiModelFactory {
@Override
public VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type, EmbeddingModel embeddingModel) {
// String cacheKey = buildClientCacheKey(VectorStore.class, platform, apiKey,
// url);
String cacheKey = buildClientCacheKey(VectorStore.class, embeddingModel, type);
return Singleton.get(cacheKey, (Func0<VectorStore>) () -> {
if (type == SimpleVectorStore.class) {
return buildSimpleVectorStore(embeddingModel);
}
if (type == QdrantVectorStore.class) {
return buildQdrantVectorStore(embeddingModel);
}
throw new IllegalArgumentException(StrUtil.format("未知类型({})", type));
// TODO @芋艿先临时使用 store
// TODO @芋艿@xin后续看看是不是切到阿里云之类的
@ -456,4 +469,38 @@ public class AiModelFactoryImpl implements AiModelFactory {
return vectorStore;
}
private QdrantVectorStore buildQdrantVectorStore(EmbeddingModel embeddingModel) {
QdrantVectorStoreAutoConfiguration configuration = new QdrantVectorStoreAutoConfiguration();
QdrantVectorStoreProperties vectorStoreProperties = SpringUtil.getBean(QdrantVectorStoreProperties.class);
// 参考 QdrantVectorStoreAutoConfiguration 实现创建 QdrantClient 对象
QdrantGrpcClient.Builder grpcClientBuilder = QdrantGrpcClient.newBuilder(
vectorStoreProperties.getHost(), vectorStoreProperties.getPort(), vectorStoreProperties.isUseTls());
if (StrUtil.isNotEmpty(vectorStoreProperties.getApiKey())) {
grpcClientBuilder.withApiKey(vectorStoreProperties.getApiKey());
}
QdrantClient qdrantClient = new QdrantClient(grpcClientBuilder.build());
// 参考 QdrantVectorStoreAutoConfiguration 实现实现 batchingStrategy
BatchingStrategy batchingStrategy = ReflectUtil.invoke(configuration, "batchingStrategy");
// 创建 QdrantVectorStore 对象
ObjectProvider<ObservationRegistry> observationRegistry = new ObjectProvider<>() {
@Override
public ObservationRegistry getObject() throws BeansException {
return SpringUtil.getBean(ObservationRegistry.class);
}
};
ObjectProvider <VectorStoreObservationConvention> customObservationConvention = new ObjectProvider<>() {
@Override
public VectorStoreObservationConvention getObject() throws BeansException {
return new DefaultVectorStoreObservationConvention();
}
};
return configuration.vectorStore(embeddingModel, vectorStoreProperties, qdrantClient,
observationRegistry, customObservationConvention, batchingStrategy);
}
}

View File

@ -4,6 +4,11 @@ server:
--- #################### 数据库相关配置 ####################
spring:
spring:
autoconfigure:
exclude:
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
# 数据源配置项
datasource:
druid: # Druid 【监控】相关的全局配置

View File

@ -3,13 +3,15 @@ server:
--- #################### 数据库相关配置 ####################
spring:
# 数据源配置项
autoconfigure:
exclude:
- org.springframework.boot.autoconfigure.quartz.QuartzAutoConfiguration # 默认 local 环境,不开启 Quartz 的自动配置
- de.codecentric.boot.admin.server.config.AdminServerAutoConfiguration # 禁用 Spring Boot Admin 的 Server 的自动配置
- de.codecentric.boot.admin.server.ui.config.AdminServerUiAutoConfiguration # 禁用 Spring Boot Admin 的 Server UI 的自动配置
- de.codecentric.boot.admin.client.config.SpringBootAdminClientAutoConfiguration # 禁用 Spring Boot Admin 的 Client 的自动配置
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant手动创建
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus手动创建
# 数据源配置项
datasource:
druid: # Druid 【监控】相关的全局配置
web-stat-filter:

View File

@ -151,6 +151,12 @@ spring:
redis:
index: default-index
prefix: "default:"
qdrant:
collection-name: knowledge_segment
host: 127.0.0.1
port: 6334
use-tls: false
api-key:
qianfan: # 文心一言
api-key: x0cuLZ7XsaTCU08vuJWO87Lg
secret-key: R9mYF9dl9KASgi5RUq0FQt3wRisSnOcK