【功能新增】AI:增加 QdrantVectorStore 向量库的接入
This commit is contained in:
parent
6ccd0ca61e
commit
44bcc9476d
|
@ -54,7 +54,6 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
|
|||
private AiKnowledgeService knowledgeService;
|
||||
|
||||
@Override
|
||||
@Transactional(rollbackFor = Exception.class)
|
||||
public Long createKnowledgeDocument(AiKnowledgeDocumentCreateReqVO createReqVO) {
|
||||
// 1. 校验参数
|
||||
knowledgeService.validateKnowledgeExists(createReqVO.getKnowledgeId());
|
||||
|
@ -74,7 +73,6 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
|
|||
}
|
||||
|
||||
@Override
|
||||
@Transactional(rollbackFor = Exception.class)
|
||||
public List<Long> createKnowledgeDocumentList(AiKnowledgeDocumentCreateListReqVO createListReqVO) {
|
||||
// 1. 校验参数
|
||||
knowledgeService.validateKnowledgeExists(createListReqVO.getKnowledgeId());
|
||||
|
|
|
@ -115,6 +115,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
|||
segmentMapper.updateById(newSegment);
|
||||
// 3.2 重新向量化,必须开启状态
|
||||
if (CommonStatusEnum.isEnable(oldSegment.getStatus())) {
|
||||
newSegment.setKnowledgeId(oldSegment.getKnowledgeId()).setDocumentId(oldSegment.getDocumentId());
|
||||
writeVectorStore(vectorStore, newSegment, new Document(newSegment.getContent()));
|
||||
}
|
||||
}
|
||||
|
@ -156,9 +157,10 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
|||
|
||||
private void writeVectorStore(VectorStore vectorStore, AiKnowledgeSegmentDO segmentDO, Document segment) {
|
||||
// 1. 向量存储
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_KNOWLEDGE_ID, segmentDO.getKnowledgeId());
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_DOCUMENT_ID, segmentDO.getDocumentId());
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_SEGMENT_ID, segmentDO.getId());
|
||||
// 为什么要 toString 呢?因为部分 VectorStore 实现,不支持 Long 类型,例如说 QdrantVectorStore
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_KNOWLEDGE_ID, segmentDO.getKnowledgeId().toString());
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_DOCUMENT_ID, segmentDO.getDocumentId().toString());
|
||||
segment.getMetadata().put(VECTOR_STORE_METADATA_SEGMENT_ID, segmentDO.getId().toString());
|
||||
vectorStore.add(List.of(segment));
|
||||
|
||||
// 2. 更新向量 ID
|
||||
|
@ -190,7 +192,8 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
|||
.similarityThreshold(
|
||||
ObjUtil.defaultIfNull(reqBO.getSimilarityThreshold(), knowledge.getSimilarityThreshold()))
|
||||
.filterExpression(new FilterExpressionBuilder()
|
||||
.eq(VECTOR_STORE_METADATA_KNOWLEDGE_ID, reqBO.getKnowledgeId()).build())
|
||||
.eq(VECTOR_STORE_METADATA_KNOWLEDGE_ID, reqBO.getKnowledgeId().toString())
|
||||
.build())
|
||||
.build());
|
||||
if (CollUtil.isEmpty(documents)) {
|
||||
return ListUtil.empty();
|
||||
|
|
|
@ -16,8 +16,8 @@ import jakarta.annotation.Resource;
|
|||
import org.springframework.ai.chat.model.ChatModel;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.image.ImageModel;
|
||||
import org.springframework.ai.vectorstore.SimpleVectorStore;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
|
||||
import org.springframework.stereotype.Service;
|
||||
import org.springframework.validation.annotation.Validated;
|
||||
|
||||
|
@ -162,7 +162,8 @@ public class AiModelServiceImpl implements AiModelService {
|
|||
platform, apiKey.getApiKey(), apiKey.getUrl(), model.getModel());
|
||||
|
||||
// 创建或获取 VectorStore 对象
|
||||
return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel);
|
||||
// return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel);
|
||||
return modelFactory.getOrCreateVectorStore(QdrantVectorStore.class, embeddingModel);
|
||||
}
|
||||
|
||||
}
|
|
@ -70,6 +70,7 @@
|
|||
<groupId>${spring-ai.groupId}</groupId>
|
||||
<artifactId>spring-ai-qdrant-store</artifactId>
|
||||
<version>${spring-ai.version}</version>
|
||||
<!-- <optional>true</optional>-->
|
||||
</dependency>
|
||||
|
||||
<dependency>
|
||||
|
|
|
@ -11,6 +11,7 @@ import cn.iocoder.yudao.framework.ai.core.model.siliconflow.SiliconFlowChatModel
|
|||
import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
|
||||
import org.springframework.ai.openai.OpenAiChatModel;
|
||||
import org.springframework.ai.openai.OpenAiChatOptions;
|
||||
import org.springframework.ai.openai.api.OpenAiApi;
|
||||
|
@ -29,7 +30,9 @@ import org.springframework.context.annotation.Lazy;
|
|||
* @author fansili
|
||||
*/
|
||||
@AutoConfiguration
|
||||
@EnableConfigurationProperties(YudaoAiProperties.class)
|
||||
@EnableConfigurationProperties({YudaoAiProperties.class,
|
||||
QdrantVectorStoreProperties.class // 解析 Qdrant 配置
|
||||
})
|
||||
@Slf4j
|
||||
public class YudaoAiAutoConfiguration {
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ import cn.hutool.core.lang.Assert;
|
|||
import cn.hutool.core.lang.Singleton;
|
||||
import cn.hutool.core.lang.func.Func0;
|
||||
import cn.hutool.core.util.ArrayUtil;
|
||||
import cn.hutool.core.util.ReflectUtil;
|
||||
import cn.hutool.core.util.RuntimeUtil;
|
||||
import cn.hutool.core.util.StrUtil;
|
||||
import cn.hutool.extra.spring.SpringUtil;
|
||||
|
@ -26,6 +27,9 @@ import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingModel;
|
|||
import com.alibaba.cloud.ai.dashscope.embedding.DashScopeEmbeddingOptions;
|
||||
import com.alibaba.cloud.ai.dashscope.image.DashScopeImageModel;
|
||||
import com.azure.ai.openai.OpenAIClientBuilder;
|
||||
import io.micrometer.observation.ObservationRegistry;
|
||||
import io.qdrant.client.QdrantClient;
|
||||
import io.qdrant.client.QdrantGrpcClient;
|
||||
import lombok.SneakyThrows;
|
||||
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiChatProperties;
|
||||
|
@ -33,11 +37,14 @@ import org.springframework.ai.autoconfigure.azure.openai.AzureOpenAiConnectionPr
|
|||
import org.springframework.ai.autoconfigure.ollama.OllamaAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.openai.OpenAiAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.qianfan.QianFanAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
|
||||
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiConnectionProperties;
|
||||
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
|
||||
import org.springframework.ai.chat.model.ChatModel;
|
||||
import org.springframework.ai.document.MetadataMode;
|
||||
import org.springframework.ai.embedding.BatchingStrategy;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.image.ImageModel;
|
||||
import org.springframework.ai.ollama.OllamaChatModel;
|
||||
|
@ -57,10 +64,15 @@ import org.springframework.ai.stabilityai.StabilityAiImageModel;
|
|||
import org.springframework.ai.stabilityai.api.StabilityAiApi;
|
||||
import org.springframework.ai.vectorstore.SimpleVectorStore;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
import org.springframework.ai.vectorstore.observation.DefaultVectorStoreObservationConvention;
|
||||
import org.springframework.ai.vectorstore.observation.VectorStoreObservationConvention;
|
||||
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiChatModel;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiImageModel;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiImageApi;
|
||||
import org.springframework.beans.BeansException;
|
||||
import org.springframework.beans.factory.ObjectProvider;
|
||||
import org.springframework.web.client.RestClient;
|
||||
|
||||
import java.io.File;
|
||||
|
@ -214,13 +226,14 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
|
||||
@Override
|
||||
public VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type, EmbeddingModel embeddingModel) {
|
||||
// String cacheKey = buildClientCacheKey(VectorStore.class, platform, apiKey,
|
||||
// url);
|
||||
String cacheKey = buildClientCacheKey(VectorStore.class, embeddingModel, type);
|
||||
return Singleton.get(cacheKey, (Func0<VectorStore>) () -> {
|
||||
if (type == SimpleVectorStore.class) {
|
||||
return buildSimpleVectorStore(embeddingModel);
|
||||
}
|
||||
if (type == QdrantVectorStore.class) {
|
||||
return buildQdrantVectorStore(embeddingModel);
|
||||
}
|
||||
throw new IllegalArgumentException(StrUtil.format("未知类型({})", type));
|
||||
// TODO @芋艿:先临时使用 store
|
||||
// TODO @芋艿:@xin:后续看看,是不是切到阿里云之类的
|
||||
|
@ -456,4 +469,38 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
return vectorStore;
|
||||
}
|
||||
|
||||
private QdrantVectorStore buildQdrantVectorStore(EmbeddingModel embeddingModel) {
|
||||
QdrantVectorStoreAutoConfiguration configuration = new QdrantVectorStoreAutoConfiguration();
|
||||
QdrantVectorStoreProperties vectorStoreProperties = SpringUtil.getBean(QdrantVectorStoreProperties.class);
|
||||
// 参考 QdrantVectorStoreAutoConfiguration 实现,创建 QdrantClient 对象
|
||||
QdrantGrpcClient.Builder grpcClientBuilder = QdrantGrpcClient.newBuilder(
|
||||
vectorStoreProperties.getHost(), vectorStoreProperties.getPort(), vectorStoreProperties.isUseTls());
|
||||
if (StrUtil.isNotEmpty(vectorStoreProperties.getApiKey())) {
|
||||
grpcClientBuilder.withApiKey(vectorStoreProperties.getApiKey());
|
||||
}
|
||||
QdrantClient qdrantClient = new QdrantClient(grpcClientBuilder.build());
|
||||
// 参考 QdrantVectorStoreAutoConfiguration 实现,实现 batchingStrategy
|
||||
BatchingStrategy batchingStrategy = ReflectUtil.invoke(configuration, "batchingStrategy");
|
||||
|
||||
// 创建 QdrantVectorStore 对象
|
||||
ObjectProvider<ObservationRegistry> observationRegistry = new ObjectProvider<>() {
|
||||
|
||||
@Override
|
||||
public ObservationRegistry getObject() throws BeansException {
|
||||
return SpringUtil.getBean(ObservationRegistry.class);
|
||||
}
|
||||
|
||||
};
|
||||
ObjectProvider <VectorStoreObservationConvention> customObservationConvention = new ObjectProvider<>() {
|
||||
|
||||
@Override
|
||||
public VectorStoreObservationConvention getObject() throws BeansException {
|
||||
return new DefaultVectorStoreObservationConvention();
|
||||
}
|
||||
|
||||
};
|
||||
return configuration.vectorStore(embeddingModel, vectorStoreProperties, qdrantClient,
|
||||
observationRegistry, customObservationConvention, batchingStrategy);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -4,6 +4,11 @@ server:
|
|||
--- #################### 数据库相关配置 ####################
|
||||
|
||||
spring:
|
||||
spring:
|
||||
autoconfigure:
|
||||
exclude:
|
||||
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant,手动创建
|
||||
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus,手动创建
|
||||
# 数据源配置项
|
||||
datasource:
|
||||
druid: # Druid 【监控】相关的全局配置
|
||||
|
|
|
@ -3,13 +3,15 @@ server:
|
|||
|
||||
--- #################### 数据库相关配置 ####################
|
||||
spring:
|
||||
# 数据源配置项
|
||||
autoconfigure:
|
||||
exclude:
|
||||
- org.springframework.boot.autoconfigure.quartz.QuartzAutoConfiguration # 默认 local 环境,不开启 Quartz 的自动配置
|
||||
- de.codecentric.boot.admin.server.config.AdminServerAutoConfiguration # 禁用 Spring Boot Admin 的 Server 的自动配置
|
||||
- de.codecentric.boot.admin.server.ui.config.AdminServerUiAutoConfiguration # 禁用 Spring Boot Admin 的 Server UI 的自动配置
|
||||
- de.codecentric.boot.admin.client.config.SpringBootAdminClientAutoConfiguration # 禁用 Spring Boot Admin 的 Client 的自动配置
|
||||
- org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration # 禁用 AI 模块的 Qdrant,手动创建
|
||||
- org.springframework.ai.autoconfigure.vectorstore.milvus.MilvusVectorStoreAutoConfiguration # 禁用 AI 模块的 Milvus,手动创建
|
||||
# 数据源配置项
|
||||
datasource:
|
||||
druid: # Druid 【监控】相关的全局配置
|
||||
web-stat-filter:
|
||||
|
|
|
@ -151,6 +151,12 @@ spring:
|
|||
redis:
|
||||
index: default-index
|
||||
prefix: "default:"
|
||||
qdrant:
|
||||
collection-name: knowledge_segment
|
||||
host: 127.0.0.1
|
||||
port: 6334
|
||||
use-tls: false
|
||||
api-key:
|
||||
qianfan: # 文心一言
|
||||
api-key: x0cuLZ7XsaTCU08vuJWO87Lg
|
||||
secret-key: R9mYF9dl9KASgi5RUq0FQt3wRisSnOcK
|
||||
|
|
Loading…
Reference in New Issue