【代码优化】AI:适配 Spring AI 1.0.6 对 OpenAI 的逻辑
This commit is contained in:
parent
7ef73b7d09
commit
5655ae925c
|
@ -98,7 +98,7 @@ public class AiChatMessageServiceImpl implements AiChatMessageService {
|
|||
ChatResponse chatResponse = chatModel.call(prompt);
|
||||
|
||||
// 3.4 段式返回
|
||||
String newContent = chatResponse.getResult().getOutput().getContent();
|
||||
String newContent = chatResponse.getResult().getOutput().getText();
|
||||
chatMessageMapper.updateById(new AiChatMessageDO().setId(assistantMessage.getId()).setSegmentIds(convertList(segmentList, AiKnowledgeSegmentDO::getId)).setContent(newContent));
|
||||
return new AiChatMessageSendRespVO().setSend(BeanUtils.toBean(userMessage, AiChatMessageSendRespVO.Message.class))
|
||||
.setReceive(BeanUtils.toBean(assistantMessage, AiChatMessageSendRespVO.Message.class).setContent(newContent));
|
||||
|
@ -136,7 +136,7 @@ public class AiChatMessageServiceImpl implements AiChatMessageService {
|
|||
// TODO 注意:Schedulers.immediate() 目的是,避免默认 Schedulers.parallel() 并发消费 chunk 导致 SSE 响应前端会乱序问题
|
||||
StringBuffer contentBuffer = new StringBuffer();
|
||||
return streamResponse.map(chunk -> {
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getContent() : null;
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getText() : null;
|
||||
newContent = StrUtil.nullToDefault(newContent, ""); // 避免 null 的 情况
|
||||
contentBuffer.append(newContent);
|
||||
// 响应结果
|
||||
|
|
|
@ -60,7 +60,7 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
|
|||
List<Document> documents = loader.get();
|
||||
Document document = CollUtil.getFirst(documents);
|
||||
// 1.2 文档记录入库
|
||||
String content = document.getContent();
|
||||
String content = document.getText();
|
||||
AiKnowledgeDocumentDO documentDO = BeanUtils.toBean(createReqVO, AiKnowledgeDocumentDO.class)
|
||||
.setTokens(tokenCountEstimator.estimate(content)).setWordCount(content.length())
|
||||
.setStatus(CommonStatusEnum.ENABLE.getStatus()).setSliceStatus(AiKnowledgeDocumentStatusEnum.SUCCESS.getStatus());
|
||||
|
@ -77,9 +77,9 @@ public class AiKnowledgeDocumentServiceImpl implements AiKnowledgeDocumentServic
|
|||
List<Document> segments = tokenTextSplitter.apply(documents);
|
||||
// 2.2 分段内容入库
|
||||
List<AiKnowledgeSegmentDO> segmentDOList = CollectionUtils.convertList(segments,
|
||||
segment -> new AiKnowledgeSegmentDO().setContent(segment.getContent()).setDocumentId(documentId)
|
||||
segment -> new AiKnowledgeSegmentDO().setContent(segment.getText()).setDocumentId(documentId)
|
||||
.setKnowledgeId(createReqVO.getKnowledgeId()).setVectorId(segment.getId())
|
||||
.setTokens(tokenCountEstimator.estimate(segment.getContent())).setWordCount(segment.getContent().length())
|
||||
.setTokens(tokenCountEstimator.estimate(segment.getText())).setWordCount(segment.getText().length())
|
||||
.setStatus(CommonStatusEnum.ENABLE.getStatus()));
|
||||
segmentMapper.insertBatch(segmentDOList);
|
||||
|
||||
|
|
|
@ -106,10 +106,12 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
|||
VectorStore vectorStore = apiKeyService.getOrCreateVectorStore(model.getKeyId());
|
||||
|
||||
// 3.1 向量检索
|
||||
List<Document> documentList = vectorStore.similaritySearch(SearchRequest.query(reqVO.getContent())
|
||||
.withTopK(knowledge.getTopK())
|
||||
.withSimilarityThreshold(knowledge.getSimilarityThreshold())
|
||||
.withFilterExpression(new FilterExpressionBuilder().eq(AiKnowledgeSegmentDO.FIELD_KNOWLEDGE_ID, reqVO.getKnowledgeId()).build()));
|
||||
List<Document> documentList = vectorStore.similaritySearch(SearchRequest.builder()
|
||||
.query(reqVO.getContent())
|
||||
.topK(knowledge.getTopK())
|
||||
.similarityThreshold(knowledge.getSimilarityThreshold())
|
||||
.filterExpression(new FilterExpressionBuilder().eq(AiKnowledgeSegmentDO.FIELD_KNOWLEDGE_ID, reqVO.getKnowledgeId()).build())
|
||||
.build());
|
||||
if (CollUtil.isEmpty(documentList)) {
|
||||
return ListUtil.empty();
|
||||
}
|
||||
|
|
|
@ -85,7 +85,7 @@ public class AiMindMapServiceImpl implements AiMindMapService {
|
|||
// 3.2 流式返回
|
||||
StringBuffer contentBuffer = new StringBuffer();
|
||||
return streamResponse.map(chunk -> {
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getContent() : null;
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getText() : null;
|
||||
newContent = StrUtil.nullToDefault(newContent, ""); // 避免 null 的 情况
|
||||
contentBuffer.append(newContent);
|
||||
// 响应结果
|
||||
|
|
|
@ -92,7 +92,7 @@ public class AiWriteServiceImpl implements AiWriteService {
|
|||
// 3.2 流式返回
|
||||
StringBuffer contentBuffer = new StringBuffer();
|
||||
return streamResponse.map(chunk -> {
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getContent() : null;
|
||||
String newContent = chunk.getResult() != null ? chunk.getResult().getOutput().getText() : null;
|
||||
newContent = StrUtil.nullToDefault(newContent, ""); // 避免 null 的 情况
|
||||
contentBuffer.append(newContent);
|
||||
// 响应结果
|
||||
|
|
|
@ -22,11 +22,16 @@ import java.util.List;
|
|||
*/
|
||||
public class OpenAIChatModelTests {
|
||||
|
||||
private final OpenAiApi openAiApi = new OpenAiApi(
|
||||
"https://api.holdai.top",
|
||||
"sk-dZEPiVaNcT3FHhef51996bAa0bC74806BeAb620dA5Da10Bf");
|
||||
private final OpenAiChatModel chatModel = new OpenAiChatModel(openAiApi,
|
||||
OpenAiChatOptions.builder().model(OpenAiApi.ChatModel.GPT_4_O).build());
|
||||
private static final OpenAiChatModel chatModel = OpenAiChatModel.builder()
|
||||
.openAiApi(OpenAiApi.builder()
|
||||
.baseUrl("https://api.holdai.top")
|
||||
.apiKey("sk-aN6nWn3fILjrgLFT0fC4Aa60B72e4253826c77B29dC94f17") // apiKey
|
||||
.build())
|
||||
.defaultOptions(OpenAiChatOptions.builder()
|
||||
.model(OpenAiApi.ChatModel.GPT_4_O) // 模型
|
||||
.temperature(0.7)
|
||||
.build())
|
||||
.build();
|
||||
|
||||
@Test
|
||||
@Disabled
|
||||
|
|
|
@ -5,8 +5,11 @@ import org.junit.jupiter.api.Test;
|
|||
import org.springframework.ai.image.ImageOptions;
|
||||
import org.springframework.ai.image.ImagePrompt;
|
||||
import org.springframework.ai.image.ImageResponse;
|
||||
import org.springframework.ai.openai.OpenAiChatModel;
|
||||
import org.springframework.ai.openai.OpenAiChatOptions;
|
||||
import org.springframework.ai.openai.OpenAiImageModel;
|
||||
import org.springframework.ai.openai.OpenAiImageOptions;
|
||||
import org.springframework.ai.openai.api.OpenAiApi;
|
||||
import org.springframework.ai.openai.api.OpenAiImageApi;
|
||||
import org.springframework.web.client.RestClient;
|
||||
|
||||
|
@ -17,11 +20,10 @@ import org.springframework.web.client.RestClient;
|
|||
*/
|
||||
public class OpenAiImageModelTests {
|
||||
|
||||
private final OpenAiImageApi imageApi = new OpenAiImageApi(
|
||||
"https://api.holdai.top",
|
||||
"sk-dZEPiVaNcT3FHhef51996bAa0bC74806BeAb620dA5Da10Bf",
|
||||
RestClient.builder());
|
||||
private final OpenAiImageModel imageModel = new OpenAiImageModel(imageApi);
|
||||
private final OpenAiImageModel imageModel = new OpenAiImageModel(OpenAiImageApi.builder()
|
||||
.baseUrl("https://api.holdai.top") // apiKey
|
||||
.apiKey("sk-aN6nWn3fILjrgLFT0fC4Aa60B72e4253826c77B29dC94f17")
|
||||
.build());
|
||||
|
||||
@Test
|
||||
@Disabled
|
||||
|
|
|
@ -163,7 +163,7 @@ spring:
|
|||
zhipuai: # 智谱 AI
|
||||
api-key: 32f84543e54eee31f8d56b2bd6020573.3vh9idLJZ2ZhxDEs
|
||||
openai: # OpenAI 官方
|
||||
api-key: sk-yzKea6d8e8212c3bdd99f9f44ced1cae37c097e5aa3BTS7z
|
||||
api-key: sk-aN6nWn3fILjrgLFT0fC4Aa60B72e4253826c77B29dC94f17
|
||||
base-url: https://api.gptsapi.net
|
||||
azure: # OpenAI 微软
|
||||
openai:
|
||||
|
@ -175,11 +175,8 @@ spring:
|
|||
model: llama3
|
||||
stabilityai:
|
||||
api-key: sk-e53UqbboF8QJCscYvzJscJxJXoFcFg4iJjl1oqgE7baJETmx
|
||||
cloud:
|
||||
ai:
|
||||
tongyi: # 通义千问
|
||||
tongyi:
|
||||
api-key: sk-Zsd81gZYg7
|
||||
dashscope: # 通义千问
|
||||
api-key: sk-71800982914041848008480000000000
|
||||
|
||||
yudao:
|
||||
ai:
|
||||
|
|
Loading…
Reference in New Issue