【功能新增】AI:增加 RedisVectorStore 向量库的接入
This commit is contained in:
parent
44bcc9476d
commit
588c9fe323
|
@ -32,6 +32,7 @@ import org.springframework.stereotype.Service;
|
|||
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
|
||||
import static cn.iocoder.yudao.framework.common.exception.util.ServiceExceptionUtil.exception;
|
||||
|
@ -48,9 +49,14 @@ import static cn.iocoder.yudao.module.ai.enums.ErrorCodeConstants.KNOWLEDGE_SEGM
|
|||
@Slf4j
|
||||
public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService {
|
||||
|
||||
public static final String VECTOR_STORE_METADATA_KNOWLEDGE_ID = "knowledgeId";
|
||||
public static final String VECTOR_STORE_METADATA_DOCUMENT_ID = "documentId";
|
||||
public static final String VECTOR_STORE_METADATA_SEGMENT_ID = "segmentId";
|
||||
private static final String VECTOR_STORE_METADATA_KNOWLEDGE_ID = "knowledgeId";
|
||||
private static final String VECTOR_STORE_METADATA_DOCUMENT_ID = "documentId";
|
||||
private static final String VECTOR_STORE_METADATA_SEGMENT_ID = "segmentId";
|
||||
|
||||
private static final Map<String, Class<?>> VECTOR_STORE_METADATA_TYPES = Map.of(
|
||||
VECTOR_STORE_METADATA_KNOWLEDGE_ID, String.class,
|
||||
VECTOR_STORE_METADATA_DOCUMENT_ID, String.class,
|
||||
VECTOR_STORE_METADATA_SEGMENT_ID, String.class);
|
||||
|
||||
@Resource
|
||||
private AiKnowledgeSegmentMapper segmentMapper;
|
||||
|
@ -257,7 +263,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
|||
}
|
||||
|
||||
private VectorStore getVectorStoreById(AiKnowledgeDO knowledge) {
|
||||
return modelService.getOrCreateVectorStore(knowledge.getEmbeddingModelId());
|
||||
return modelService.getOrCreateVectorStore(knowledge.getEmbeddingModelId(), VECTOR_STORE_METADATA_TYPES);
|
||||
}
|
||||
|
||||
private VectorStore getVectorStoreById(Long knowledgeId) {
|
||||
|
|
|
@ -13,6 +13,7 @@ import org.springframework.ai.vectorstore.VectorStore;
|
|||
|
||||
import javax.annotation.Nullable;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* AI 模型 Service 接口
|
||||
|
@ -125,8 +126,9 @@ public interface AiModelService {
|
|||
* 获得 VectorStore 对象
|
||||
*
|
||||
* @param id 编号
|
||||
* @param metadataFields 元数据的定义
|
||||
* @return VectorStore 对象
|
||||
*/
|
||||
VectorStore getOrCreateVectorStore(Long id);
|
||||
VectorStore getOrCreateVectorStore(Long id, Map<String, Class<?>> metadataFields);
|
||||
|
||||
}
|
||||
|
|
|
@ -22,6 +22,7 @@ import org.springframework.stereotype.Service;
|
|||
import org.springframework.validation.annotation.Validated;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
import static cn.iocoder.yudao.framework.common.exception.util.ServiceExceptionUtil.exception;
|
||||
import static cn.iocoder.yudao.module.ai.enums.ErrorCodeConstants.*;
|
||||
|
@ -151,7 +152,7 @@ public class AiModelServiceImpl implements AiModelService {
|
|||
}
|
||||
|
||||
@Override
|
||||
public VectorStore getOrCreateVectorStore(Long id) {
|
||||
public VectorStore getOrCreateVectorStore(Long id, Map<String, Class<?>> metadataFields) {
|
||||
// 获取模型 + 密钥
|
||||
AiModelDO model = validateModel(id);
|
||||
AiApiKeyDO apiKey = apiKeyService.validateApiKey(model.getKeyId());
|
||||
|
@ -162,8 +163,9 @@ public class AiModelServiceImpl implements AiModelService {
|
|||
platform, apiKey.getApiKey(), apiKey.getUrl(), model.getModel());
|
||||
|
||||
// 创建或获取 VectorStore 对象
|
||||
// return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel);
|
||||
return modelFactory.getOrCreateVectorStore(QdrantVectorStore.class, embeddingModel);
|
||||
// return modelFactory.getOrCreateVectorStore(SimpleVectorStore.class, embeddingModel, metadataFields);
|
||||
return modelFactory.getOrCreateVectorStore(QdrantVectorStore.class, embeddingModel, metadataFields);
|
||||
// return modelFactory.getOrCreateVectorStore(RedisVectorStore.class, embeddingModel, metadataFields);
|
||||
}
|
||||
|
||||
}
|
|
@ -12,12 +12,12 @@ import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
|
|||
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
|
||||
import org.springframework.ai.openai.OpenAiChatModel;
|
||||
import org.springframework.ai.openai.OpenAiChatOptions;
|
||||
import org.springframework.ai.openai.api.OpenAiApi;
|
||||
import org.springframework.ai.tokenizer.JTokkitTokenCountEstimator;
|
||||
import org.springframework.ai.tokenizer.TokenCountEstimator;
|
||||
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
|
||||
import org.springframework.boot.autoconfigure.AutoConfiguration;
|
||||
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty;
|
||||
import org.springframework.boot.context.properties.EnableConfigurationProperties;
|
||||
|
@ -31,7 +31,8 @@ import org.springframework.context.annotation.Lazy;
|
|||
*/
|
||||
@AutoConfiguration
|
||||
@EnableConfigurationProperties({YudaoAiProperties.class,
|
||||
QdrantVectorStoreProperties.class // 解析 Qdrant 配置
|
||||
QdrantVectorStoreProperties.class, // 解析 Qdrant 配置
|
||||
RedisVectorStoreProperties.class, // 解析 Redis 配置
|
||||
})
|
||||
@Slf4j
|
||||
public class YudaoAiAutoConfiguration {
|
||||
|
@ -200,32 +201,6 @@ public class YudaoAiAutoConfiguration {
|
|||
// return new TransformersEmbeddingModel(MetadataMode.EMBED);
|
||||
// }
|
||||
|
||||
/**
|
||||
* TODO @xin 默认版本先不弄,目前都先取对应的 EmbeddingModel
|
||||
*/
|
||||
// @Bean
|
||||
// @Lazy // TODO 芋艿:临时注释,避免无法启动
|
||||
// public RedisVectorStore vectorStore(TransformersEmbeddingModel embeddingModel, RedisVectorStoreProperties properties,
|
||||
// RedisProperties redisProperties) {
|
||||
// var config = RedisVectorStore.RedisVectorStoreConfig.builder()
|
||||
// .withIndexName(properties.getIndex())
|
||||
// .withPrefix(properties.getPrefix())
|
||||
// .withMetadataFields(new RedisVectorStore.MetadataField("knowledgeId", Schema.FieldType.NUMERIC))
|
||||
// .build();
|
||||
//
|
||||
// RedisVectorStore redisVectorStore = new RedisVectorStore(config, embeddingModel,
|
||||
// new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
|
||||
// properties.isInitializeSchema());
|
||||
// redisVectorStore.afterPropertiesSet();
|
||||
// return redisVectorStore;
|
||||
// }
|
||||
@Bean
|
||||
@Lazy // TODO 芋艿:临时注释,避免无法启动
|
||||
public TokenTextSplitter tokenTextSplitter() {
|
||||
//TODO @xin 配置提取
|
||||
return new TokenTextSplitter(500, 100, 5, 10000, true);
|
||||
}
|
||||
|
||||
@Bean
|
||||
@Lazy // TODO 芋艿:临时注释,避免无法启动
|
||||
public TokenCountEstimator tokenCountEstimator() {
|
||||
|
|
|
@ -8,6 +8,8 @@ import org.springframework.ai.embedding.EmbeddingModel;
|
|||
import org.springframework.ai.image.ImageModel;
|
||||
import org.springframework.ai.vectorstore.VectorStore;
|
||||
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* AI Model 模型工厂的接口类
|
||||
*
|
||||
|
@ -96,13 +98,16 @@ public interface AiModelFactory {
|
|||
|
||||
/**
|
||||
* 基于指定配置,获得 VectorStore 对象
|
||||
* <p>
|
||||
*
|
||||
* 如果不存在,则进行创建
|
||||
*
|
||||
* @param type 向量存储类型
|
||||
* @param embeddingModel 向量模型
|
||||
* @param metadataFields 元数据字段
|
||||
* @return VectorStore 对象
|
||||
*/
|
||||
VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type, EmbeddingModel embeddingModel);
|
||||
VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type,
|
||||
EmbeddingModel embeddingModel,
|
||||
Map<String, Class<?>> metadataFields);
|
||||
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@ import cn.iocoder.yudao.framework.ai.core.model.midjourney.api.MidjourneyApi;
|
|||
import cn.iocoder.yudao.framework.ai.core.model.siliconflow.SiliconFlowChatModel;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.suno.api.SunoApi;
|
||||
import cn.iocoder.yudao.framework.ai.core.model.xinghuo.XingHuoChatModel;
|
||||
import cn.iocoder.yudao.framework.common.util.spring.SpringUtils;
|
||||
import com.alibaba.cloud.ai.autoconfigure.dashscope.DashScopeAutoConfiguration;
|
||||
import com.alibaba.cloud.ai.dashscope.api.DashScopeApi;
|
||||
import com.alibaba.cloud.ai.dashscope.api.DashScopeImageApi;
|
||||
|
@ -39,12 +40,13 @@ import org.springframework.ai.autoconfigure.openai.OpenAiAutoConfiguration;
|
|||
import org.springframework.ai.autoconfigure.qianfan.QianFanAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.qdrant.QdrantVectorStoreProperties;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.vectorstore.redis.RedisVectorStoreProperties;
|
||||
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiAutoConfiguration;
|
||||
import org.springframework.ai.autoconfigure.zhipuai.ZhiPuAiConnectionProperties;
|
||||
import org.springframework.ai.azure.openai.AzureOpenAiChatModel;
|
||||
import org.springframework.ai.chat.model.ChatModel;
|
||||
import org.springframework.ai.document.MetadataMode;
|
||||
import org.springframework.ai.embedding.BatchingStrategy;
|
||||
import org.springframework.ai.embedding.EmbeddingModel;
|
||||
import org.springframework.ai.image.ImageModel;
|
||||
import org.springframework.ai.ollama.OllamaChatModel;
|
||||
|
@ -67,20 +69,26 @@ import org.springframework.ai.vectorstore.VectorStore;
|
|||
import org.springframework.ai.vectorstore.observation.DefaultVectorStoreObservationConvention;
|
||||
import org.springframework.ai.vectorstore.observation.VectorStoreObservationConvention;
|
||||
import org.springframework.ai.vectorstore.qdrant.QdrantVectorStore;
|
||||
import org.springframework.ai.vectorstore.redis.RedisVectorStore;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiChatModel;
|
||||
import org.springframework.ai.zhipuai.ZhiPuAiImageModel;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiApi;
|
||||
import org.springframework.ai.zhipuai.api.ZhiPuAiImageApi;
|
||||
import org.springframework.beans.BeansException;
|
||||
import org.springframework.beans.factory.ObjectProvider;
|
||||
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
|
||||
import org.springframework.web.client.RestClient;
|
||||
import redis.clients.jedis.JedisPooled;
|
||||
|
||||
import java.io.File;
|
||||
import java.time.Duration;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.Timer;
|
||||
import java.util.TimerTask;
|
||||
|
||||
import static cn.iocoder.yudao.framework.common.util.collection.CollectionUtils.convertList;
|
||||
|
||||
/**
|
||||
* AI Model 模型工厂的实现类
|
||||
*
|
||||
|
@ -225,7 +233,9 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
}
|
||||
|
||||
@Override
|
||||
public VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type, EmbeddingModel embeddingModel) {
|
||||
public VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type,
|
||||
EmbeddingModel embeddingModel,
|
||||
Map<String, Class<?>> metadataFields) {
|
||||
String cacheKey = buildClientCacheKey(VectorStore.class, embeddingModel, type);
|
||||
return Singleton.get(cacheKey, (Func0<VectorStore>) () -> {
|
||||
if (type == SimpleVectorStore.class) {
|
||||
|
@ -234,23 +244,10 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
if (type == QdrantVectorStore.class) {
|
||||
return buildQdrantVectorStore(embeddingModel);
|
||||
}
|
||||
if (type == RedisVectorStore.class) {
|
||||
return buildRedisVectorStore(embeddingModel, metadataFields);
|
||||
}
|
||||
throw new IllegalArgumentException(StrUtil.format("未知类型({})", type));
|
||||
// TODO @芋艿:先临时使用 store
|
||||
// TODO @芋艿:@xin:后续看看,是不是切到阿里云之类的
|
||||
// String prefix = StrUtil.format("{}#{}:", platform.getPlatform(), apiKey);
|
||||
// var config = RedisVectorStore.RedisVectorStoreConfig.builder()
|
||||
// .withIndexName(cacheKey)
|
||||
// .withPrefix(prefix)
|
||||
// .withMetadataFields(new RedisVectorStore.MetadataField("knowledgeId",
|
||||
// Schema.FieldType.NUMERIC))
|
||||
// .build();
|
||||
// RedisProperties redisProperties = SpringUtils.getBean(RedisProperties.class);
|
||||
// RedisVectorStore redisVectorStore = new RedisVectorStore(config,
|
||||
// embeddingModel,
|
||||
// new JedisPooled(redisProperties.getHost(), redisProperties.getPort()),
|
||||
// true);
|
||||
// redisVectorStore.afterPropertiesSet();
|
||||
// return redisVectorStore;
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -469,21 +466,65 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
return vectorStore;
|
||||
}
|
||||
|
||||
/**
|
||||
* 参考 {@link QdrantVectorStoreAutoConfiguration} 的 vectorStore 方法
|
||||
*/
|
||||
@SneakyThrows
|
||||
private QdrantVectorStore buildQdrantVectorStore(EmbeddingModel embeddingModel) {
|
||||
QdrantVectorStoreAutoConfiguration configuration = new QdrantVectorStoreAutoConfiguration();
|
||||
QdrantVectorStoreProperties vectorStoreProperties = SpringUtil.getBean(QdrantVectorStoreProperties.class);
|
||||
QdrantVectorStoreProperties properties = SpringUtil.getBean(QdrantVectorStoreProperties.class);
|
||||
// 参考 QdrantVectorStoreAutoConfiguration 实现,创建 QdrantClient 对象
|
||||
QdrantGrpcClient.Builder grpcClientBuilder = QdrantGrpcClient.newBuilder(
|
||||
vectorStoreProperties.getHost(), vectorStoreProperties.getPort(), vectorStoreProperties.isUseTls());
|
||||
if (StrUtil.isNotEmpty(vectorStoreProperties.getApiKey())) {
|
||||
grpcClientBuilder.withApiKey(vectorStoreProperties.getApiKey());
|
||||
properties.getHost(), properties.getPort(), properties.isUseTls());
|
||||
if (StrUtil.isNotEmpty(properties.getApiKey())) {
|
||||
grpcClientBuilder.withApiKey(properties.getApiKey());
|
||||
}
|
||||
QdrantClient qdrantClient = new QdrantClient(grpcClientBuilder.build());
|
||||
// 参考 QdrantVectorStoreAutoConfiguration 实现,实现 batchingStrategy
|
||||
BatchingStrategy batchingStrategy = ReflectUtil.invoke(configuration, "batchingStrategy");
|
||||
|
||||
// 创建 QdrantVectorStore 对象
|
||||
ObjectProvider<ObservationRegistry> observationRegistry = new ObjectProvider<>() {
|
||||
QdrantVectorStore vectorStore = configuration.vectorStore(embeddingModel, properties, qdrantClient,
|
||||
getObservationRegistry(), getCustomObservationConvention(),
|
||||
ReflectUtil.invoke(configuration, "batchingStrategy"));
|
||||
// 初始化索引
|
||||
vectorStore.afterPropertiesSet();
|
||||
return vectorStore;
|
||||
}
|
||||
|
||||
/**
|
||||
* 参考 {@link RedisVectorStoreAutoConfiguration} 的 vectorStore 方法
|
||||
*/
|
||||
private RedisVectorStore buildRedisVectorStore(EmbeddingModel embeddingModel,
|
||||
Map<String, Class<?>> metadataFields) {
|
||||
// 创建 JedisPooled 对象
|
||||
RedisProperties redisProperties = SpringUtils.getBean(RedisProperties.class);
|
||||
JedisPooled jedisPooled = new JedisPooled(redisProperties.getHost(), redisProperties.getPort());
|
||||
// 创建 RedisVectorStoreProperties 对象
|
||||
RedisVectorStoreAutoConfiguration configuration = new RedisVectorStoreAutoConfiguration();
|
||||
RedisVectorStoreProperties properties = SpringUtil.getBean(RedisVectorStoreProperties.class);
|
||||
RedisVectorStore redisVectorStore = RedisVectorStore.builder(jedisPooled, embeddingModel)
|
||||
.indexName(properties.getIndex()).prefix(properties.getPrefix())
|
||||
.initializeSchema(properties.isInitializeSchema())
|
||||
.metadataFields(convertList(metadataFields.entrySet(), entry -> {
|
||||
String fieldName = entry.getKey();
|
||||
Class<?> fieldType = entry.getValue();
|
||||
if (Number.class.isAssignableFrom(fieldType)) {
|
||||
return RedisVectorStore.MetadataField.numeric(fieldName);
|
||||
}
|
||||
if (Boolean.class.isAssignableFrom(fieldType)) {
|
||||
return RedisVectorStore.MetadataField.tag(fieldName);
|
||||
}
|
||||
return RedisVectorStore.MetadataField.text(fieldName);
|
||||
}))
|
||||
.observationRegistry(getObservationRegistry().getObject())
|
||||
.customObservationConvention(getCustomObservationConvention().getObject())
|
||||
.batchingStrategy(ReflectUtil.invoke(configuration, "batchingStrategy"))
|
||||
.build();
|
||||
// 初始化索引
|
||||
redisVectorStore.afterPropertiesSet();
|
||||
return redisVectorStore;
|
||||
}
|
||||
|
||||
private static ObjectProvider<ObservationRegistry> getObservationRegistry() {
|
||||
return new ObjectProvider<>() {
|
||||
|
||||
@Override
|
||||
public ObservationRegistry getObject() throws BeansException {
|
||||
|
@ -491,16 +532,15 @@ public class AiModelFactoryImpl implements AiModelFactory {
|
|||
}
|
||||
|
||||
};
|
||||
ObjectProvider <VectorStoreObservationConvention> customObservationConvention = new ObjectProvider<>() {
|
||||
}
|
||||
|
||||
private static ObjectProvider<VectorStoreObservationConvention> getCustomObservationConvention() {
|
||||
return new ObjectProvider<>() {
|
||||
@Override
|
||||
public VectorStoreObservationConvention getObject() throws BeansException {
|
||||
return new DefaultVectorStoreObservationConvention();
|
||||
}
|
||||
|
||||
};
|
||||
return configuration.vectorStore(embeddingModel, vectorStoreProperties, qdrantClient,
|
||||
observationRegistry, customObservationConvention, batchingStrategy);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -149,10 +149,12 @@ spring:
|
|||
ai:
|
||||
vectorstore: # 向量存储
|
||||
redis:
|
||||
index: default-index
|
||||
prefix: "default:"
|
||||
initialize-schema: true
|
||||
index: knowledge_index # Redis 中向量索引的名称:用于存储和检索向量数据的索引标识符,所有相关的向量搜索操作都会基于这个索引进行
|
||||
prefix: "knowledge_segment:" # Redis 中存储向量数据的键名前缀:这个前缀会添加到每个存储在 Redis 中的向量数据键名前,每个 document 都是一个 hash 结构
|
||||
qdrant:
|
||||
collection-name: knowledge_segment
|
||||
initialize-schema: true
|
||||
collection-name: knowledge_segment # Qdrant 中向量集合的名称:用于存储向量数据的集合标识符,所有相关的向量操作都会在这个集合中进行
|
||||
host: 127.0.0.1
|
||||
port: 6334
|
||||
use-tls: false
|
||||
|
|
Loading…
Reference in New Issue